1 First-Order ODEs

1.1 Concepts

1. Integrating factors is for linear, first-order differential equations. It is of the form

$$
y^{\prime}+P(t) y=Q(t)
$$

To solve this, we multiply the equation by the integrating factor $I(t)=e^{\int P(t) d t}$. Then we can calculate that $I^{\prime}(t)=I(t) P(t)$ and

$$
(I(t) y)^{\prime}=I(t) y^{\prime}+I^{\prime}(t) y=I(t) y^{\prime}+I(t) P(t) y=I(t)\left(y^{\prime}+P(t) y\right)=I(t) Q(t)
$$

Taking the integral gives us

$$
I(t) y=\int I(t) Q(t) d t \Longrightarrow y=\frac{1}{I(t)} \int I(t) Q(t) d t
$$

2. Separable equations is for first-order differential equations which can be separated. It is separable if we can write it of the form

$$
y^{\prime}=f(y) g(t)
$$

We write $y^{\prime}=\frac{d y}{d t}$ and split it to get

$$
\int \frac{d y}{f(y)}=\int g(t) d t
$$

If $f(y)$ is a polynomial, we use partial fractions to integrate the left side. There are also solutions gotten by solving $f(y)=0$.

1.2 Problems

3. True FALSE We cannot use the method of separable equations on $y^{\prime}=e^{y+t}$ because it involves a sum of y and t.

Solution: We actually have $e^{y+t}=e^{y} e^{t}$ and hence it is the product of functions involving t and y and hence we can use separable equations.
4. True FALSE If we can use the method of separable equations, we must be able to write $y^{\prime}=(a y+b) f(t)$ for a linear polynomial in terms of y.

Solution: We do not need the function in y to be linear.
5. True FALSE The equation $y^{\prime}=y+t$ is not separable and so we do not know how to solve it.

Solution: It is indeed not separable but we can write it as $y^{\prime}-y=t$ which is a form that we know how to solve with integrating factors.
6. Find the solution of $y^{\prime}+2 x y=2 x$ with $y(0)=0$.

Solution: The integrating factor is $e^{\int 2 x d x}=e^{x^{2}}$. Multiplying by this gives

$$
e^{x^{2}} y^{\prime}+2 x e^{x^{2}} y=\left(e^{x^{2}} y\right)^{\prime}=2 x e^{x^{2}}
$$

Now integrating gives $e^{x^{2}} y=e^{x^{2}}+C$ and hence $y=1+C e^{-x^{2}}$. Plugging in the initial condition gives us that $0=1+C e^{-0}=1+C$ and hence $C=-1$ so the solution is $y=1-e^{-x^{2}}$.
7. Find the general solution to $y^{\prime}-\frac{y}{x+1}=(x+1)^{2}$.

Solution: The integrating factor is $I(x)=e^{\int-\frac{1}{x+1} d x}=e^{-\ln (x+1)}=\frac{1}{x+1}$. We multiply through by this to get

$$
\frac{y^{\prime}}{x+1}-\frac{y}{(x+1)^{2}}=\left(\frac{y}{x+1}\right)^{\prime}=x+1
$$

Now, we integrate to get

$$
\frac{y}{x+1}=\frac{(x+1)^{2}}{2}+C
$$

and hence $y=\frac{(x+1)^{3}}{2}+C(x+1)$.
8. Find the solution to $\frac{d y}{d t}=2 y+3$ with $y(0)=0$.

Solution: Separate to get

$$
\frac{d y}{2 y+3}=d t \Longrightarrow \frac{\ln (2 y+3)}{2}=t+C
$$

so $2 y+3=e^{2 t+C}$. We can bring the constant down as multiplying by a constant so $e^{2 t+C}=e^{2 t} \cdot e^{C}=C e^{2 t}$ and so

$$
y=\frac{C e^{2 t}-3}{2} .
$$

Taking $y(0)=0$ gives $0=(C-3) / 2$ so $C=3$ and we get

$$
y=\frac{3 e^{2 t}-3}{2}
$$

9. Find the solution to $y^{\prime} e^{y}=2 t+1$ with $y(1)=0$.

Solution: We can rewrite this as $y^{\prime}=(2 t+1) e^{-y}$ and see this that is a separable equation because it is something involving t multiplied by something involving y. Now we can write this is $\frac{d y}{d t} e^{y}=2 t+1$ and multiplying by $d t$ gives

$$
e^{y} d y=(2 t+1) d t
$$

and integrating gives $e^{y}=t^{2}+t+C$ and this is the implicit solution. Now to find C, we plug in the initial condition to get $1=e^{0}=1^{2}+1+C=2+C$. Hence $C=-1$ and the solution is $e^{y}=t^{2}+t-1$.
10. Solve the IVP $y^{\prime}=t e^{t}$ with $y(0)=0$.

Solution: We solve by integrating $t e^{t}$. We do this using integration by parts. Let $u=t$ and $d v=e^{t} d t$ so $d u=d t$ and $v=e^{t}$. Integrating gives $\int t e^{t} d t=t e^{t}-\int e^{t} d t=$ $t e^{t}-e^{t}+C$. Now we solve for our initial condition that $y(0)=0 e^{0}-e^{0}+C=C-1=0$ so $C=1$. Thus the solution is $t e^{t}-e^{t}+1$.
11. Solve the IVP $y^{\prime}=\frac{1}{t \ln t}$ with $y(e)=0$.

Solution: We find the integral using u substitution. Let $u=\ln t$ and then $y=$ $\int \frac{1}{t \ln t} d t=\frac{d u}{u}=\ln |u|+C+\ln (\ln t)+C$. Plug in our initial condition that $y(e)=0$ to get $\ln (\ln e)+C=\ln 1+C=C=0$ so $y=\ln (\ln t)$ is our solution.

